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An Accurate, Unified Solution to Various
Fin-Line Structures, of Phase Constant,

Characteristic Impedance,
and Attenuation

D. MIRSHEKAR-SYAHKAL AND J. BRIAN DAVIES, MEMBER, IEEE

Abstract —The analysis of severaf fin-line configurations (unilateral

fin-line, bilateral fin-line, antipodat fin-line, and coupled fin-lines) has been

completed accurately. In this unified method, propagation constaut is

achieved via the generalized spectral domain technique where the basis

functions for the bounded and unbounded fields are chosen to be trigono-
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metric functions and Legendre polynomials, respectively. The conduction

loss and dielectric loss solution for the first time are fouud through a

perturbation method. The conductor loss so derived is befieved to be

sufficiently accurate for practical purposes. Characteristic impedances of

these transmission lines using tentative definitions have been presented.

The CPU time on an IBM 360/65 for calculation of the mentioned

parameters does not exceed five seconds if the fourth-order solution in the

spectral analysis gives the required accuracy. The programs are also

capable of detection of bigher order modes.
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Fig. 1. General structure and various type of firdines. Numerical exam-

ples are performed for structures (a), (b), (e), and (g), where the outside
cover is WG-22 waveguide and the dielectric is placed in the middle of

its broad wafl. In afl the mentioned cases, dielectric thickness= 0.127
mm, (,=2.22, tan8Z =2X10-4, and p= 3x10-8 fl.m.

L lNTRODUCTION

wORK AT millimeter bands has presented a need for

a new low-loss transmission line capable of being

interfaced with other integrated components. Fin-lines, viz.

metallic strips etched on plastic or ceramic substrate em-

bodied in the trunk of the standard rectangular waveguides

have been the first guiding structures fulfilling these en-

gineering requirements. Many descriptions of these lines
can be found in the literature [1], [2]. Alternative transmis-

sion lines at millimeter band are image lines [3]. Although

they present lower losses than fin-line, difficulty in making

them easily adapted to conventional microwave compo-

nents has left them second in application to fin-lines.

In spite of scattered results in the literature on the phase

constant and characteristic impedance of some fin-lines, no

account of losses has yet been given. Therefore, the prob-

lem of optimum design of the fin-line, involving the con-

ductor and dielectric losses has remained unsolved. One

must bear in mind that, as the gap in fin-lines becomes

smaller and smaller, the conductor loss may even exceed

the microstrip loss which can be achieved at the same band

as fin-line.

The technique implemented to get the phase constants of

all fin-lines, including unilateral, bilateral, antipodal, and

coupled fin-line, Fig. 1, is the generalized spectral domain

approach developed by the authors [4], [5]. The basis

functions as before [5] are chosen to be Legendre poly-

nomials for the unbounded field components near the

sharp edges of fins and/or strips. The reason for the choice

of Legendre polynomials is not just because they enjoy a

closed-form Fourier transformation, but they are also ad-

vantageous in computing conductor losses. This point will

be clarified in Section II-B. A perturbation solution for

conductor loss and dielectric loss has been given in [6] for a

general microwave integrated coplanar transmission line.

This is used directly in fin-lines for the same purposes.

In this analysis of fin-lines, results are compared with

accurate and reliable sources of information, if available.

The presented techniques are very efficient in computing,

and it is believed they could be programmed for fin-lines

onto a small computer, with about 30K-byte store.

II. THEORETICAL BACKGROUND

As the method is a development of that described in [4],

[6] for multilayer dielectric multistrips, a very short resume

is given below to highlight the remarks made later for

individual fin-line configurations.

Consider Fig, l(a), where the right-hand side wall (i.e.,

Y= O), can be assumed as a magnetic wall or electric wall,

and conductors, either strips or fins, are placed on one side

of the dielectric as shown. This structure is a substructure

of the general planar configuration shown in [4], [6]. There-

fore, in view of lossless conductors and homogeneous

dielectrics the following relations hold true [4], [6]:

[41 I-41

where

[qJ=[Y2h-’[YlM

(1)

(2)

and A2, B2, c2, Dz, A,, Bl, Cl, and D, are the coefficients

of potential functions in the finite Fourier domain given as

follows :

~~ ‘~,sinhyi,.y’+ Bicoshyi, HY (3)

~~ = C,sinhy,,.Y+ D,coshy,, nY, i=l,2 (4)

where

a“, jy,, ”, ~ are the X, Y, Z components of wavenumber k,

in each region of dielectrics, and an denotes the Fourier

spectrum constant given by

n~

a“==’
n=o, 1,2, . . . (6)

for unsymmetrical structures. For a structure with mag-

netic wall or electric wall at X = a, a“ becomes

an = (n + l/2)7r/a or an =nfl/a (7)

respectively.

From [4] and [6], the matrix [G] relating Ex, E=, Yx, and JZ

at y = h, + S and in the Fourier domain is sp~ified by

(8)

where ~ and ~ are E and J in the Fourier domain. As
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numerically proved, different arrangements of (8) submit

different computing efficiencies [6]. Efficiency is measured

by the number of basis functions required in each arrange-

ment to reach the same precision in a solution. An instance

of this can be seen in the microstrip problem where (8) is

much more efficient than (9), while in slot relation (9) is

superior

[-1[-1[G]-’ ; =; .
x z

(9)

It is believed that to achieve the optimum CPU time, the

arrangement should be chosen in which currents and/or

electric fields are to be approximated over the shortest

intervals. In the proceeding work, it is thus much easier to

work with (9) since usually Ex and E= have to be expanded

over a small interval, within the gap for unilateral (Fig.

l(b) and (c)) and bilateral (Fig. l(d) and (e)) fin-line. For

some gap dimensions, the performance of (9) may not be

the most efficient, but since continuity of numerical solu-

tions is of concern, (9) has been used for all gap dimen-

sions. In antipodal fin-line (Fig. 1(f) and (g)), (8) is

advantageous for fin dimensions less than ‘ a‘, but as the

fin size becomes larger than ‘a’, (9) yields a solution in less

CPU time.

Assuming G,j in (9) are known, the next step is to select

expansion functions for Ex and Ez. The expansion func-

tions chosen throughout are Legendre polynomials for the

unbounded field Ex, and sinusoids for the bounded field

Ez. The explicit expressions for the basis functions are

given for each fin-line structure later in the paper. The

choice of Legendre polynomials for approximation of Ex is

because a) they have closed-form Fourier transform, and b)

although required to approximate the unbounded singular-

ity of Ex [7], the individual Legendre polynomials are

bounded. The latter fact is actually advantageous in the

computation of conductor loss where, due to the un-

bounded fields for an infinitely thin perfect conductor, the

use of unbounded basis functions leads to unbounded

conductor loss. This point is expanded later in Section

II-B.

Transforming the basis functions into the Fourier do-

main and substituting in (9), then applying Galerkin’s

method and Parseval’s identity, one obtains a set of homo-

geneous linear equations whose nontrivial solution yields

phase constant of the structure in question [8].

A. Dielectric Loss

Calculation of dielectric loss is based on the assumption

of low-loss dielectric materials. Therefore, a perturbation

formulation developed in [6] for a general shape planar

structure can be directly implemented for all fin-line con-

figurations and the final expression is given by

J,~Z~ltanl ~l&12~S
ad= ‘

J
2Re ~OXH$~S

s

In (10), ~. and fiO are electric and magnetic

(lo)

fields before

introduction of dielectric loss, tan 8,. S and S, represent the

whole cross section and dielectric sections, respectively.

Since all fields are available in the transformed domain,

both integrals in (10) are reduced to truncated series,

greatly simplifying the computations of ad [6].

B. Conductor Loss

The conventional formula for conductor loss of a trans-

mission line with high conductivity conductor is given by

[9]

l?~jfi,l’dl
c

~c =

/

(11)

2Re ~0 X ~~&
s

where R, is surface resistance and Hf is the tangential

magnetic field around the conductor periphery for lossless

case. The only problem encountered in calculation of aC is

the integral

/1 Iii, 2 dl.

c

(12)

This integral is unbounded at the edge of an infinitely thin

lossless strip [10], and (11) has to be used cautiously with

conductor edges.

In fin-line, microstrip, and similar planar guides, field

components Ex and .lZ will have r– 1’2 type singularities

near any thin perfectly conducting edge. Substitution into

(11) gives an unbounded value-an infinity that is a

mathematical artefact. This is because, consequent on the

assumption of a finite conductivity, it immediately follows

that fields are everywhere bounded—even in geometric

limit of the zero-thickness strip with sharp edges. Bounded

fields will yield a bounded value for attenuation, (assuming

only a nonzero net power flow).

Of course, the assumption of a finite conductivity to-

gether with a zero-thickness conductor must be interpreted

carefully at microwave frequencies. It must be assumed

that the conductor thickness is much greater than the skin

depth; this is usually true in practice at microwave fre-

quencies, and needs to be true for the perturbation ap-

proach of(11) to be valid. For validity of the field analysis

between the conductor regions, ‘zero thickness’ must be

taken as meaning that the conductor thickness is much less

than any structural dimensions.

To describe the procedure used for the computation of

conductor loss, suppose that either Ex or Jz is expanded as

a truncated series of Legendre polynomials, (in Section

III-A, (18) gives the choice for unilateral fin-line; Jz would

be similarly expanded for microstrip)

EX = ~ amZ’2(m_,)(x/w). (13)
?? 1=1

Limiting the number of terms to P means that spatial

discrimination in the X direction is limited to w/P; the

essential singularity of

J

w dx

0 (w–x)
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is replaced by the finite

/

W(1--I/P) dx

o (w-x)”

One can then ask the question: How does the. computed

result for attenuation depend on P the number of terms?

Tests with microstrip have shown that increasing the highest

polynomial order from 4 to 12 gives an attenuation higher

by about 10 percent. The structure chosen was the micro-

strip in [5, fig. 6(b)], with w/d = 2 and using 150 Fourier

terms, where the resulting attenuation increases from 0.59

to 0.64 dB/m. Although not conclusive, it does indicate the

reasonable convergence, and so the usefulness, of the con-

ductor-loss calculation. Formula (11) does, of course, de-

pend on satisfying the inequalities

skin depth << strip thickness << other structural dimensions,

C. Characteristic Impedance

Due to hybrid wave propagation in fin-lines, a unique

definition for characteristic impedance does not exist.

However, the most common and useful definition is based

on the voltage/power relationship, where the voltage is

measured from one fin edge to another. In the configura-

tion analyzed, for single fin-line, the characteristic imped-

ance 20 is given by

20= v2/P (14)

while for coupled lines

20= 2v2/P (15)

where

v=
J

EXdx (16)
over gap

/
P=Re ~ox~;~s (17)

s

where S is the whole cross section of the guide.

111. APPLICATIONS

The technique described above is now applied to various

examples of fin-line, outlined as follows.

A. Unilateral Fin-Line

Fig. l(b) shows a generic cross section of unilateral

fin-line where h ~ may be different from d (see Fig. l(a)).

This case is similar to shielded slot analyzed by the authors

in [5]. Therefore, all the relations given for G,~ can be

directly implemented in a computer program to analyze the

unilateral fin-line. Notice that for this structure, the G

elements of (8) correspond to consideration of an electr;~

wall at y = O; in relation (1) B1 = Cl = O. As ‘discussed

above, basis functions are given by

E.= ~ aM~z(~.l)(x/~)
~=1

/

, Ixl<w at y=h, +8

E,= ~ b.sinm~(x/w)
m=l (18)

100I

.5

.

.3

,1

9
0.0 0.2 0.4 ./..,6 0.8 1.0

Fig. 2. Normalized wavelength A/A ~ and characteristic impedance ZO
of unilateral finline (Fig. l(b)).
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Fig. 3. Conductor loss aC and dielectric loss ad of unilateral finline (Fig.
l(b)).

where Z’z(~. 1, represents Legendre polynomials of degree
2(m – 1).

The computer results for propagation constant, char-

acteristic impedance, dielectric loss, and conductor loss for

a fin-line whose dielectric substrate is symmetrically placed

within WG-22 waveguide are given in Fig. 2 and Fig. 3

over Ka-band. To check the speed of convergence and the

accuracy of the applied method, it was tested against [11]

where a very close agreement after considering P = Q = 4

was achieved.

For unilateral fin-line with very low dielectric constant,

c = 1.0003 and with large gap w/a = 0.98, the normalized

wavelength, characteristic impedance, and conductor loss

are compared with those of empty guide supporting the

TE,0 mode (Table I). The close agreement of values of

those two guides indeed supports the accuracy of the

presented numerical technique.

From Fig. 3, it is seen that, due to heavy concentration

of fields near the small gap, the conductor loss and dielec-

tric loss are not very low. Nevertheless, for a 400-pm gap,

commonly etched, the total loss is around 2.5 dB/m over

the whole Ka-band.
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Fig. 5. (a) Conductor loss aC and (b) dielectric loss ad of even and odd

mode of coupled finline (Fig. 1(c)).

TABLE I

A COMPARISON BETWEEN EMPTY WG-22 WAVEGUIDE PARAMETERS ( * )
AND THOSE OF UNILATERAL FIN-LINE WITH w/a = 0.98,

C,=1.0003.4ND P=3X10-8Q m

Freq. GHz A,/Ao Z“(Q) a, dB/m
I 1 1

1.598* 599.16’ 0.937”
27 1.603 604.24 0.946

I 1.176” I 440.54” I 0.675”
40 1.177 443.78 0.671

B. Coupled Coplanar Fin-Lines

This structure, Fig. l(c), has recently been used in mak-

ing a quadriphase fin-line modulator [12] where the param-

eters have been obtained empirically. However, with the

introduced general technique, determination of the re-

quired parameters of the coupled coplanar fin-lines is not

difficult. The only alteration to be made in the unilateral
fin-line analysis is the change of basis functions given by

EX=. f anPM_l[(x–w–s)/s] 1

E:= f bmsin[rnw(x – w)/2.s] r

W< X< W+2S at y=h, +ti. (19)

For the ‘odd mode’ (defined here as having Ez an odd

function of x and EX an even function) the basis functions

are correspondingly defined for negative x. The ‘even
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Fig. 6. A comparison between unilateral finline (Fig. 1(b)) and bilateral

finline (Fig. l(e)).

mode’ has E, an even function of x and EX an odd

function.

Figs. 4 and 5 illustrate the results of A/AO, 2., aC, and

ad versus slot width for two different separations of slots at

a frequency of 27 GHz. The coupled coplanar fin-line as

before is considered in WG-22 waveguide. A comparison

of the parameters of the odd mode is carried out with those

of unilateral fin-line whose slot width is twice the value of

each slot. At the limit, as the separation between the two

slots becomes zero, the coupled coplanar fin-line ap-

proaches the mentioned unilateral fin-line. From the given

curves, the approach of parameters of the coupled line to

the mentioned single line is not always monotonic but one

can see their general consistency.

C. Unilateral Fin-Line and Bilateral Fin-Line

as Coupled Line

Conventional and more general forms of bilateral fin-line

are shown in Fig. 1(e) and (d). By symmetry about the

x-axis, the analysis can be carried out just for one half of

the structure. Considering a magnetic wall at y = O, the [G]

matrix in (8) is obtained by substituting Al = D, = O in (l).

This change in(1) corresponds to exchange of sinh by cosh

and vice versa for all field relations in the first dielectric

region, for the case of electric wall symmetry plane at

Y =0, equivalent to Fig. l(b) [4]. Therefore, the computer
program developed for unilateral fin-line can be directly

applied to the bilateral fin-line with some minor modifi-

cation. The computer results for a conventional bilateral

fin-line embodied in WG-22 waveguide have been il-

lustrated in Fig. 6. A comparison of this line with un-

ilateral fin-line of the same category, Figs. 2 and 3, reveals

only a small change in the values of the associated parame-

ters from one line to another. However, this observation

may not be true for a substrate with greater thickness.

Another feature of bilateral fin-line is its flexibility in being

used as a pair of coupled lines, i.e., two coupled unilateral

fin-lines. For the analysis of this aspect of unilateral fin-line,

programs developed for the unilateral fin-line and bilateral

fin-line can be called into service provided that the char-

acteristic impedances for the even and odd modes are now

defined through relation (15).

D. Antipodal Fin-Line

Cross sections of antipodal fin-lines have been shown in

Fig. l(g) and (f), where—in the latter—the structure is

more general than Fig. 1(g). Note that in these two figures,

there are distinct x, y axes and X, Y axes; this simplifies

the equation presentation.

It is assumed that both structures have 180° rotational

symmetry. This symmetry permits the solution for the

fields to be expressed in a particular arrangement of even

and odd symmetry, although the antipodal fin-line struc-

ture does not enjoy the simpler reflection symmetries about

a plane, like those in unilateral and bilateral fin-lines. To

find the solution, consider the potential functions in the

space domain for the first dielectric region which, (from

(3), (4), and (6)), are given as follows:

*’(X, Y)= ~ (Alsinhyl,.Y+ BIcoshyl, ~Y)sinatiX
~=o

(20)

i/Jfi(X, Y) = ~ (C1sinhy,,.Y+ D1coshyl, HY)cosa. X.
~=o

(21)

For two points m and m’ equally distant from O and on the

X-axis, the following relations hold (Fig. l(f)):

#e,~)(X,O) = @e,h)(2a - X,O) (22)

provided that in (20) and (21) B, and D] are given by

B1=O

D1=O

A similar argument for

the y-axis leads to the

(21):

A1=O

C,=o

Therefore, as n takes O,

fern= 0,2,4,6,. . .

forn=l,3,5,7, . . . . (23)

equally distant points n and n’ on

following conclusion in (20) and

forn=l,3,5,7, . . .

fern= 0,2,4,6, . . . . (24)

1,2,, ... the right-hand side of (1)

changes alternately between the following matrices:

o Al
B1 o
c,

and
o “

(25)

o D1

Hence, having found [G] matrices corresponding to the

above situations, their combination gives the required [G]

matrix of the antipodal fin-line. But the [G] matrices

corresponding to (25) are already available as the [G]

matrix of unilateral fin-line and [G] matrix of bilateral

fin-line with magnetic wall considered at they-axis. There-

fore, the solution of the antipodal fin-line by combining

the two programs of the previous structures are now acces-

sible provided that the basis functions are chosen as below
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Fig. 7. (a) Normalized wavelength and (b) dielectric loss of antipodal
finline (Fig. l(g)).

TABLE II

2s=3mm,8= 0.127 mm, e,=2.22, p=3X10-8Qm,
andtan8t =2X10-4

TEM Approx, Spectraf Domain

Freq.

GH.z Z. (xC ad Z. ~c ad

27 10.77 15.0 0.73 10.05 14.0 0.69

40 10.77 18.5 1.08 10.51 17.5 1.00

(Fig. l(f)):

w< X<2a at Y=hl +8. (26)

By means of this developed method, a=, ad, A/AO, and ZO
of an antipodal fin-line with h, = O (Fig. l(g)) have been

computed and shown in Figs. 7 and 8. From these results

and their comparison with unilateral fin-line results, Figs. 2

and 3, it is concluded that without overlap of the two fins,

parameters of the antipodal, unilateral, and bilateral fin-

lines are not significantly different. But as the fins start

overlapping each other, the antipodal parameters vary sub-

0.0 0,2 0.4 0.6 sle. 0.8 1..

Fig. 8. Conductor loss a= and characteristic impedance ZO of antlpodal
fixdine (Fig. l(g)).

stantially and are like those of parallel plate waveguide in

which a TEM wave propagates. To substantiate the latter

argument, &c, ad, Z. of the antipodal fin-line at large over-

lapping have been contrasted to those of parallel plate

waveguide with width equal to 2s (Table 11). In this

comparison, parameters of finite width parallel plate wave-

guide have been derived, assuming that the fringing fields

are negligible and it supports the TEM wave with the

following relations [9]:

Z.= l/vpc (27)

aC = 4.23R, /.ZOs (28)

ad = 4.23utan6i/vP (29)

where

c = 2cocrs/8 (30)

vp=l/{G. (31)

Indeed, a close agreement is seen from Table II between

the accurate solutions of the given antipodal fin-line and

its approximate TEM model as s/a is large. Thus relations

(27)–(3 1) may be used for approximate solution of anti-

podal fin-line with largely overlapped fins. As far as char-

acteristic impedance is concerned, in the antipodal fin-lines

the definition (14) has been used. For nonoverlapped fins,

the voltage is measured from one fin edge to another, and

for the overlapped fins just EY(x, y) at x = O is integrated
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over the dielectric thickness as the substitution for the

voltage.

IV. CONCLUSIONS

A unified method for the calculation of phase constant,

characteristic impedance, dielectric loss, and conductor loss

of fin-lines has been introduced. The method is in fact an

application of the general analysis given by the authors for

multilayer multiconductor planar transmission line [4].

Since the technique includes use of the spectral domain in

determination of electric and magnetic fields, the computa-

tions of all parameters for any fin-line presented in this

paper does not take more than five seconds on an IBM

360/65 if an accuracy of 0.1 percent for phase constant is

acceptable. This is typical for P = Q = 4 in (18), (19) or

(26). For the first time, dielectric ,1OSSand conductor loss,

(taking account of dispersion), have been computed, in fact

using a perturbation technique. For maximum advantage,

particularly for achieving the conductor loss, the basis

functions are chosen to be Legendre polynomials for fields

that are singular near the 180° conductor edges and trigo-

nometric functions for fields that are bounded at the same

edge. This is in contrast to the use of singular basis

functions [13] where loss has not been considered. The

parameters of unilateral, bilateral, antipodal, and coupled

fin-lines built in WG-22 waveguide were computed and

compared against each other. Very close agreement was

seen as the method was tested against [11] for the phase

constant of unilateral fin-line. For characteristic impedance

and conductor loss, the results of unilateral fin-line with

very small fins were contrasted with those of empty wave-

guide and as expected a close connection between them

was seen. An approximate solution to the antipodal fin-line

with large overlapped fins has also been presented, show-

ing agreement with the general techniques. Specially, this

comparative study supports the approximations assumed

for the calculation of conductor loss. The higher order

mode in each discussed structure can be obtained easily

without any change in programming. The developed pro-

grams for the analyzed fin-lines could be adapted to other

fin structure by further modifications.
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