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An Accurate, Unified Solution to Various
Fin-Line Structures, of Phase Constant,
Characteristic Impedance,
and Attenuation

D. MIRSHEKAR-SYAHKAL AND J. BRIAN DAVIES, MEMBER, IEEE

Abstract —The analysis of several fin-line configurations (unilateral
fin-line, bilateral fin-line, antipodal fin-line, and coupled fin-lines) has been
completed accurately. In this unified method, propagation constant is
achieved via the generalized spectral domain technique where the basis
functions for the bounded and unbounded fields are chosen to be trigono-
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metric functions and Legendre polynomials, respectively. The conduction
loss and dielectric loss solution for the first time are found through a
perturbation method. The conductor loss so derived is believed to be
sufficiently accurate for practical purposes. Characteristic impedances of
these transmission lines using tentative definitions have been presented.
The CPU time on an IBM 360/65 for calculation of the mentioned
parameters does not exceed five seconds if the fourth-order solution in the
spectral analysis gives the required accuracy. The programs are also
capable of detection of higher order modes.
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Fig. 1. General structure and various type of finlines. Numerical exam-

ples are performed for structures (a), (b), (e), and (g), where the outside
cover is WG-22 waveguide and the dielectric is placed in the middle of
its broad wall. In all the mentioned cases, dielectric thickness = 0.127
mm, €, =222, tan8, =2x10"% and p =3x 1072 Q-m.

I. INTRODUCTION

ORK AT millimeter bands has presented a need for

a new low-loss transmission line capable of being
interfaced with other integrated components. Fin-lines, viz.
metallic strips etched on plastic or ceramic substrate em-
bodied in the trunk of the standard rectangular waveguides
have been the first guiding structures fulfilling these en-
gineering requirements. Many descriptions of these lines
can be found in the literature [1], [2]. Alternative transmis-
sion lines at millimeter band are image lines [3]. Although
they present lower losses than fin-line, difficulty in making
them easily adapted to conventional microwave compo-
nents has left them second in application to fin-lines.

In spite of scattered results in the literature on the phase
constant and characteristic impedance of some fin-lines, no
account of losses has yet been given. Therefore, the prob-
lem of optimum design of the fin-line, involving the con-
ductor and dielectric losses has remained unsolved. One
must bear in mind that, as the gap in fin-lines becomes
smaller and smaller, the conductor loss may even exceed
the microstrip loss which can be achieved at the same band
as fin-line.

The technique implemented to get the phase constants of
all fin-lines, including unilateral, bilateral, antipodal, and
coupled fin-line, Fig. 1, is the generalized spectral domain
approach developed by the authors [4], [5]. The basis
functions as before [5] are chosen to be Legendre poly-
nomials for the unbounded field components near the
sharp edges of fins and/or strips. The reason for the choice
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of Legendre polynomials is not just because they enjoy a
closed-form Fourier transformation, but they are also ad-

vantageous in computing conductor losses. This point will

be clarified in Section II-B. A perturbation solution for

conductor loss and dielectric loss has been given in [6] for a

general microwave integrated coplanar transmission line.

This is used directly in fin-lines for the same purposes.

In this analysis of fin-lines, results are compared with
accurate and reliable sources of information, if available.
The presented techniques are very efficient in computing,
and it is believed they could be programmed for fin-lines
onto a small computer, with about 30K-byte store.

II. THEORETICAL BACKGROUND

As the method is a development of that described in [4],
[6] for multilayer dielectric multistrips, a very short resumé
is given below to highlight the remarks made later for
individual fin-line configurations.

Consider Fig. 1(a), where the right-hand side wall (i.e.,
Y = 0), can be assumed as a magnetic wall or electric wall,
and conductors, either strips or fins, are placed on one side
of the dielectric as shown. This structure is a substructure
of the general planar configuration shown in [4], [6]. There-
fore, in view of lossless conductors and homogeneous
dielectrics the following relations hold true [4], {6]:

A, 4,
B, B,
e | b 5
D, | D,
where ‘
[T2,1]=[Yzh1]‘1[71h1] (2)

and 4,, B,, C,, D,, 4,, B,, C,, and D, are the coefficients
of potential functions in the finite Fourier domain given as
follows:

Ve =vA,sinhyl.'nY,+ Bicoshy, Y (3)
¢" = Csinhy, ,Y + D,coshy, Y, i=1,2 (4)

where
v2, =l + B —k? (5)

a,, JY, n» B are the X, Y, Z components of wavenumber &,
in each region of dielectrics, and a, denotes the Fourier
spectrum constant given by

nw
o -——2;, n—0,1,2,~- (6)

n

for unsymmetrical structures. For a structure with mag-
netic wall or electric wall at X = a, &, becomes

a,=(n+1/2)n/a or a,=nmn/a (7)

respectively. ‘
From [4] and [6], the matrix [G] relating Ey, E, J, and J,
at y=h,+ & and in the Fourier domain is specified by

[Gl,l GI,Z] EZ
G?.,l G2,2

Ey
where E and J are E and J in the Fourier domain. As

T
T

(8)
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numerically proved, different arrangements of (8) submit
different computing efficiencies [6]. Efficiency is measured
by the number of basis functions required in each arrange-
ment to reach the same precision in a solution. An instance
of this can be seen in the microstrip problem where (8) is
much more efficient than (9), while in slot relation (9) is
superior

E,
Ey

Ix
|

[617'] .7 = )

It is believed that to achieve the optimum CPU time, the
arrangement should be chosen in which currents and/or
electric fields are to be approximated over the shortest
intervals. In the proceeding work, it is thus much easier to
work with (9) since usually £, and E, have to be expanded
over a small interval, within the gap for unilateral (Fig.
1(b) and (¢)) and bilateral (Fig. 1(d) and (e)) fin-line. For
some gap dimensions, the performance of (9) may not be
the most efficient, but since continuity of numerical solu-
tions is of concern, (9) has been used for all gap dimen-
sions. In antipodal fin-line (Fig. 1(f) and (g)), (8) is
advantageous for fin dimensions less than ‘a’, but as the
fin size becomes larger than ‘a’, (9) yields a solution in less
CPU time.

Assuming G, in (9) are known, the next step is to select
expansion functions for E, and E,. The expansion func-
tions chosen throughout are Legendre polynomials for the
unbounded field E,, and sinusoids for the bounded field
E,. The explicit expressions for the basis functions are
given for each fin-line structure later in the paper. The
choice of Legendre polynomials for approximation of E is
because a) they have closed-form Fourier transform, and b)
although required to approximate the unbounded singular-
ity of E, [7], the individual Legendre polynomials are
bounded. The latter fact is actually advantageous in the
computation of conductor loss where, due to the un-
bounded fields for an infinitely thin perfect conductor, the
use of unbounded basis functions leads to unbounded
conductor loss. This point is expanded later in Section
I1-B.

Transforming the basis functions into the Fourier do-
main and substituting in (9), then applying Galerkin’s
method and Parseval’s identity, one obtains a set of homo-
geneous linear equations whose nontrivial solution yields
phase constant of the structure in question [8].

A. Dielectric Loss

Calculation of dielectric loss is based on the assumption
of low-loss dielectric materials. Therefore, a perturbation
formulation developed in [6] for a general shape planar
structure can be directly implemented for ail fin-line con-
figurations and the final expression is given by

wZeltanﬁtf IEO|2dS
ay=— 5 , (10)
2Re [ Eq x H ds
S

In (10), ED and ﬁo are electric and magnetic fields before

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL. 30, NO. 11, NOVEMBER 1982

introduction of dielectric loss, tand,. S and S, represent the
whole cross section and dielectric sections, respectively.
Since all fields are available in the transformed domain,
both integrals in (10) are reduced to truncated series,
greatly simplifying the computations of «, [6].

B. Conductor Loss

The conventional formula for conductor loss of a trans-
mission line with high conductivity conductor is given by

[9]
R, [|H 2 dl

a, = (11)
2Re [ By x Hyds
)

where R is surface resistance and H, is the tangential
magnetic field around the conductor periphery for lossless
case. The only problem encountered in calculation of «, is
the integral

1] a (12)

This integral is unbounded at the edge of an infinitely thin
lossless strip [10], and (11) has to be used cautiously with
conductor edges.

In fin-line, microstrip, and similar planar guides, field
components E, and J, will have r~'/? type singularities
near any thin perfectly conducting edge. Substitution into
(11) gives an unbounded value—an infinity that is a
mathematical artefact. This is because, consequent on the
assumption of a finite conductivity, it immediately follows
that fields are everywhere bounded—even in geometric
limit of the zero-thickness strip with sharp edges. Bounded
fields will yield a bounded value for attenuation, (assuming
only a nonzero net power flow).

Of course, the assumption of a finite conductivity to-
gether with a zero-thickness conductor must be interpreted
carefully at microwave frequencies. It must be assumed
that the conductor thickness is much greater than the skin
depth; this is usually true in practice at microwave fre-
quencies, and needs to be true for the perturbation ap-
proach of (11) to be valid. For validity of the field analysis
between the conductor regions, ‘zero thickness’ must be
taken as meaning that the conductor thickness is much less
than any structural dimensions.

To describe the procedure used for the computation of
conductor loss, suppose that cither E, or J, is expanded as
a truncated series of Legendre polynomials, (in Section
II1-A, (18) gives the choice for unilateral fin-line; J, would
be similarly expanded for microstrip)

P
E .= Z amPZ(m—l)(x/w)‘

m=1

(13)

Limiting the number of terms to P means that spatial
discrimination in the X direction is limited to w/P; the

essential singularity of
fW dx
o (w—x)
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is replaced by the finite

IW(l—l/P) dx
0 (w=—x)"

One can then ask the question: How does the. computed
result for attenuation depend on P the number of terms?
Tests with microstrip have shown that increasing the highest
polynomial order from 4 to 12 gives an attenuation higher
by about 10 percent. The structure chosen was the micro-
strip in [5, fig. 6(b)], with w/d = 2 and using 150 Fourier
terms, where the resulting attenuation increases from 0.59
to 0.64 dB/m. Although not conclusive, it does indicate the
reasonable convergence, and so the usefulness, of the con-
ductor-loss calculation. Formula (11) does, of course, de-
pend on satisfying the inequalities

skin depth < strip thickness << other structural dimensions.

C. Characteristic Impedance

Due to hybrid wave propagation in fin-lines, a unique
definition for characteristic impedance does not exist.
However, the most common and useful definition is based
on the voltage/power relationship, where the voltage is
measured from one fin edge to another. In the configura-
tion analyzed, for single fin-line, the characteristic imped-
ance Z, is given by

Z,=V?*/P (14)
while for coupled lines
Z,=2V?%/P (15)
where
V= f E, dx (16)
over gap

(17)

P=Re [ £, x Hy ds
s
where S is the whole cross section of the guide.

III. APPLICATIONS

The technique described above is now applied to various
examples of fin-line, outlined as follows.

A. Unilateral Fin - Line

Fig. 1(b) shows a generic cross section of unilateral
fin-line where 4, may be different from d (see Fig. 1(a)).
This case is similar to shielded slot analyzed by the authors
in [5]. Therefore, all the relations given for G,, can be
directly implemented in a computer program to analyze the
unilateral fin-line. Notice that for this structure, the G, ;
elements of (8) correspond to consideration of an electric
wall at y=0; in relation (1) B;=C,=0. As discussed
above, basis functions are given by

E

X

?Mm?Mw

amPZ(m—l)(x/w)
s |x|<w at y=h+96

—

by
I

N

b,sinmm(x/w)

(18)
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Fig. 2. Normalized wavelength A /A and characteristic impedance Z,
of unilateral finline (Fig. 1(b)).
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0.0 0.2 0.h 0.6 w/a 0.8 l.o

Fig. 3. Conductor loss &, and dielectric loss a,; of unilateral finline (Fig.

1(b)).

where Py, represents Legendre polynomials of degree
2(m—1).

The computer results for propagation constant, char-
acteristic impedance, dielectric loss, and conductor loss for
a fin-line whose dielectric substrate is symmetrically placed
within WG-22 waveguide are given in Fig. 2 and Fig. 3
over Ka-band. To check the speed of convergence and the
accuracy of the applied method, it was tested against [11]
where a very close agreement after considering P=Q =4
was achieved.

For unilateral fin-line with very low dielectric constant,
€ =1.0003 and with large gap w/a = 0.98, the normalized
wavelength, characteristic impedance, and conductor loss
are compared with those of empty guide supporting the
TE,, mode (Table I). The close agreement of values of
those two guides indeed supports the accuracy of the
presented numerical technique.

From Fig. 3, it is seen that, due to heavy concentration
of fields near the small gap, the conductor loss and dielec-
tric loss are not very low. Nevertheless, for a 400-um gap,
commonly etched, the total loss is around 2.5 dB/m over
the whole Ka-band.
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(a) Conductor loss a, and (b) dielectric loss a, of even and odd

mode of coupled finline (Fig. 1(c)).

TABLEI
A COMPARISON BETWEEN EMPTY WG-22 WAVEGUIDE PARAMETERS (*)
AND THOSE OF UNILATERAL FIN-LINE WITH w/a = (.98,
¢, =1.0003 AND p=3X1078Q.m

Freq. GHz A/ Zo(2) a,dB/m
1.598* 599.76* 0.937*
27 1.603 604.24 0.946
1.176* 440.54* 0.675*
40 1.177 443.78 0.671

B. Coupled Coplanar Fin- Lines

This structure, Fig. 1(c), has recently been used in mak-
ing a quadriphase fin-line modulator [12] where the param-
eters have been obtained empirically. However, with the

introduced general technique, determination of the re-
quired parameters of the coupled coplanar fin-lines is not
difficult. The only alteration to be made in the unilateral
fin-line analysis is the change of basis functions given by

P
Ex= aum_l[(X"W—S)/S]
m=1
Q 2
E. = Y b,sin[mn(x~w)/2s]

i

m

w<x<w+2s at y=h+8. (19)

For the ‘odd mode’ (defined here as having E, an odd
function of x and E an even function) the basis functions
are correspondingly defined for negative x. The ‘even
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Fig. 6. A comparison between unilateral finline (Fig. 1(b)) and bilateral
finline (Fig. 1(e)).

mode’ has E, an even function of x and E, an odd
function. '

Figs. 4 and 5 illustrate the results of A /A, Z,, a,, and
a, versus slot width for two different separations of slots at
a frequency of 27 GHz. The coupled coplanar fin-line as
before is considered in WG-22 waveguide. A comparison
of the parameters of the odd mode is carried out with those
of unilateral fin-line whose slot width is twice the value of
each slot. At the limit, as the separation between the two
slots becomes zero, the coupled coplanar fin-line ap-
proaches the mentioned unilateral fin-line. From the given
curves, the approach of parameters of the coupled line to
the mentioned single line is not always monotonic but one
can see their general consistency.

C. Unilateral Fin- Line and Bilateral Fin- Line
as Coupled Line

Conventional and more general forms of bilateral fin-line
are shown in Fig. 1(e) and (d). By symmetry about the
x-axis, the analysis can be carried out just for one half of
the structure. Considering a magnetic wall at y = 0, the [G]
matrix in (8) is obtained by substituting 4, = D, =0 in (1).
This change in (1) corresponds to exchange of sinh by cosh
and vice versa for all field relations in the first dielectric
region, for the case of electric wall symmetry plane at
y =0, equivalent to Fig. 1(b) [4]. Therefore, the computer
program developed for unilateral fin-line can be directly
applied to the bilateral fin-line with some minor modifi-
cation. The computer results for a conventional bilateral
fin-line embodied in WG-22 waveguide have been il-
lustrated in Fig. 6. A comparison of this line with un-
ilateral fin-line of the same category, Figs. 2 and 3, reveals
only a small change in the values of the associated parame-
ters from one line to another. However, this observation
may not be true for a substrate with greater thickness.
Another feature of bilateral fin-line is its flexibility in being
used as a pair of coupled lines, i.e., two coupled unilateral
fin-lines. For the analysis of this aspect of unilateral fin-line,
programs developed for the unilateral fin-line and bilateral
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fin-line can be called into service provided that the char-
acteristic impedances for the even and odd modes are now
defined through relation (15).

D. Antipodal Fin- Line

Cross sections of antipodal fin-lines have been shown in
Fig. 1(g) and (f), where—in the latter—the structure is
more general than Fig. 1(g). Note that in these two figures,
there are distinct x, y axes and X,Y axes; this simplifies
the equation presentation.

It is assumed that both structures have 180° rotational
symmetry. This symmetry permits the solution for the
fields to be expressed in a particular arrangement of even
and odd symmetry, although the antipodal fin-line struc-
ture does not enjoy the simpler reflection symmetries about
a plane, like those in unilateral and bilateral fin-lines. To
find the solution, consider the potential functions in the
space domain for the first dielectric region which, (from
(3), (4), and (6)), are given as follows:

Y°(X,Y)= Y (Asinhy, Y+ Bcoshy, ,Y)sine, X
n=0

(20)
[=o}
Y"(X,Y)= ) (Csinhy, Y+ Dcoshy, ,Y)cosa,X.

n=0
(21)

For two points m and m’ equally distant from 0 and on the
X-axis, the following relations hold (Fig. 1(f)):

YOP(X,0) = PP (2a - X,0)
provided that in (20) and (21) B, and D, are given by

B, =0 forn=0,2,4,6,---

D=0 forn=1,3,57,---. (23)

A similar argument for equally distant points #» and »’ on
the y-axis leads to the following conclusion in (20) and
(21):

(22)

A4,=0 forn=1,3,57,--
C,=0 forn=0,2,4,6,---. (24)

Therefore, as n takes 0,1,2,- - -, the right-hand side of (1)
changes alternately between the following matrices:

0 A,
B, 0
C, and | o |. (25)
0 D,

Hence, having found [G] matrices corresponding to the
above situations, their combination gives the required [G]
matrix of the antipodal fin-line. But the [G] matrices
corresponding to (25) are already available as the [G]
matrix of unilateral fin-line and [G] matrix of bilateral
fin-line with magnetic wall considered at the y-axis. There-
fore, the solution of the antipodal fin-line by combining
the two programs of the previous structures are now acces-
sible provided that the basis functions are chosen as below
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Fig. 7. (a) Normalized wavelength and (b) dielectric loss of antipodal
finline (Fig. 1(g)).
TABLE II
25 =3 mm, 8 =0.127 mm, ¢, =222, p = 3x 10~ 3Qm,
and tand, =2x10~%
TEM Approx. Spectral Domain
Freq.
GHz Zy a, a, Z, a, ay
27 10.77 150 073 10.05 140  0.69
40 10.77 18.5 1.08 10.51 17.5 1.00
(Fig. 1(9):
P
E'X= Z aum~l[(X— w= t)/t]
m=1
Q b
mar
E,= Y, b, sin —22—()(— w)
m =]
w<X<2a at Y=h+8. (26)

By means of this developed method, ., @,, A /A, and Z,
of an antipodal fin-line with A, =0 (Fig. 1(g)) have been
computed and shown in Figs. 7 and 8. From these results
and their comparison with unilateral fin-line resuits, Figs. 2
and 3, it is concluded that without overlap of the two fins,
parameters of the antipodal, unilateral, and bilateral fin-
lines are not significantly different. But as the fins start
overlapping each other, the antipodal parameters vary sub-
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stantially and are like those of parallel plate waveguide in
which a TEM wave propagates. To substantiate the latter
argument, «, o, Z, of the antipodal fin-line at large over-
lapping have been contrasted to those of parallel plate
waveguide with width equal to 2s (Table II). In this
comparison, parameters of finite width parallel plate wave-
guide have been derived, assuming that the fringing fields
are negligible and it supports the TEM wave with the
following relations [9]:

Zy=1/v,C
a.=423R,/Z;s
a;=423wtand; /v,

(27)
(28)
(29)
where

C=2¢y,s/8 (30)

0, =1/ i€ e, - (31)

Indeed, a close agreement is seen from Table II between
the accurate solutions of the given antipodal fin-line and
its approximate TEM model as s /a is large. Thus relations
(27)-(31) may be used for approximate solution of anti-
podal fin-line with largely overlapped fins. As far as char-
acteristic impedance is concerned, in the antipodal fin-lines
the definition (14) has been used. For nonoverlapped fins,
the voltage is measured from one fin edge to another, and
for the overlapped fins just E,(x, y) at x =0 is integrated
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over the dielectric thickness as the substitution for the
voltage.

IV. CONCLUSIONS

A unified method for the calculation of phase constant,
characteristic impedance, dielectric loss, and conductor loss
of fin-lines has been introduced. The method is in fact an
application of the general analysis given by the authors for
multilayer -multiconductor planar transmission line [4].
Since the technique includes use of the spectral domain in

determination of electric and magnetic fields, the computa-

tions of all parameters for any fin-line presented in this
paper does not take more than five seconds on an IBM
360/65 if an accuracy of 0.1 percent for phase constant is
acceptable. This is typical for P=Q =4 in (18), (19) or
(26). For the first time, dielectric loss and conductor loss,
(taking account of dispersion), have been computed, in fact
using a perturbation technique. For maximum advantage,
particularly for achieving the conductor loss, the basis
functions are chosen to be Legendre polynomials for fields
that are singular near the 180° conductor edges and trigo-
nometric functions for fields that are bounded at the same
edge. This is in contrast to the use of singular basis
functions [13] where loss has not been considered. The
parameters of unilateral, bilateral, antipodal, and coupled
fin-lines built in WG-22 waveguide were computed and

compared against each other. Very close agreement was |

seen as the method was tested against [11] for the phase
constant of unilateral fin-line. For characteristic impedance
and conductor loss, the results of unilateral fin-line with
very small fins were contrasted with those of empty wave-

guide and as expected a close connection between them

was seen. An approximate solution to the antipodal fin-line
with large overlapped fins has also been presented, show-
ing agreement with the general techniques. Specially, this
comparative study supports the approximations assumed
for the calculation of conductor loss. The higher order
mode in each discussed structure can be obtained easily
without any change in programming. The developed pro-
grams for the analyzed fin-lines could be adapted to other
fin structure by further modifications.
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